Insights and applications of bacterial outer membrane vesicles (OMV)

Reema Subramanian

PhD Candidate

Supervisor: Prof. Margaret Ip

Joint Graduate Student Seminar

Department of Microbiology, CUHK

14th December 2018

Outline

- Introduction
- Insights into bacterial OMV
 - Mechanism of OMV formation
 - OMV in pathogenesis
 - OMV in bacterial physiology
- Application of OMVs
 - OMVs as vaccines
 - OMVs as specialised drug delivery vehicles
- Summary

Introduction

- Membrane bound materials are produced and released by all domains of life
- Outer membrane vesicles (OMVs) derived from cell envelopes of Gram negative bacteria
 - Variety of environments-planktonic cultures, fresh and salt water, biofilms, inside eukaryotic cells and within mammalian hosts
- Early studies of OMVs- function in relation to pathogenesis
- Recent studies- function of OMVs from non-pathogenic bacteria
- OMVs as tools- vaccines and specialized drug delivery vehicles

What are OMVs

- Spherical portions of outer membrane of Gram negative bacteria
- Produced by growing cells- not products of cell lysis
- Approximately 50-250nm in diameter
- OMVs host a large repertoire of cargoes
 - Nucleic acids, enzymes, toxins, fragments of peptidoglycans, and proteins and fluid from the periplasmic space

Gram negative bacterial cell envelope

- Two lipid bilayers-outer membrane (OM) and inner membrane (IM)
- IM: symmetrical bilayer
- OM-asymmetrical bilayer
- Periplasm contains peptidoglycan (PG)
- Braun's lipoprotein (Lpp)- membrane protein covalently linked to peptidoglycanprovides integrity to outer membrane

Mechanisms of OMV formation

Alteration in PG and OM cross-linking

- Areas of reduced Lpp \uparrow OMV formation
 - Lpp links OM to PG-envelop stability
 - Lack of Lpp-more fluid OM- *propensity* to bulge
 - Deletion of *Lpp* enhanced production of OMVs (*E.coli*) (Moon et al. (2012))

Enrichment of lipid microdomains

- Enrichment of certain areas of outer membrane
 - Particular types of LPS, phospholipid and/or LPS-associated protein
 - Distinct from rest of outer membrane
 - Increased membrane fluidity, *↑*propensity to bulge

OMV promoting molecules

- Pseudomonas quinolone signal (PQS)
 - Produced by P. aeruginosa
 - Leads to OMV formation in variety of Gram negative bacteria
- Fuse with LPS
 - Anionic repulsion in OM surface- OMV formation (Tashiro Y. et al., 2010)
- Incorporation into OM-inducing curvature

Function of OMVs in pathogenesis

Antimicrobial/phage Resistance

Serve as decoy targets

- Manning AJ, et al. (2011)- In *E. coli*, addition of OMV or hypervesiculating mutant resistance to colistin and polymixin B
- Addition of OMV or hypervesciulating mutant increased viability of *E. coli* cultured with lytic T4 phage
 - Irreversible binding to phage

Antimicrobial resistance

Transfer of resistance genes/antibiotic degrading enzymes

- Schaar V, et al. (2011) OMVs from amoxicillin resistant *M. catarrhalis* carried active β-lactamases
 - Protected amoxicillin sensitive *M. catarrhalis*
 - Improved amoxicillin resistance in non-typable *H. influenzae* and *S. pneumoniae*

Delivery of virulence factors

Transport of immunomodulatory molecules

Vidakovics ML, et al. (2010)

- *M. catarrhalis* OMV: the outer-membrane-bound superantigen: Moraxella immunoglobulin D-binding protein (MID)
- Binds to immunoglobulin $D \rightarrow B$ cell activation
- B cell activation \rightarrow polyclonal immunoglobulin M (IgM) production \rightarrow Delay of specific antibody production \rightarrow increased survival of *M. catarrhalis*

Delivery of virulence factors

Transport of genotoxins

Chitcholtan K, et al. (2008)

• H. pylori OMVs transport genotoxins to gastric epithelial cells

- Micronuclei formation
- Alterations in iron metabolism and oxidative stress \rightarrow genomic damage
- Dependant on OMV associated cytotoxin Vacuolating toxin A (VacA)
- Purified VacA- \downarrow glutathione- used by glutathione peroxidase to break down H₂O₂, \uparrow H₂O₂ associated DNA damage

Function of OMVs in bacterial physiology

OMVs in stress response

Means to dispose envelope 'garbage'

Schwechheimer C and Kuehn MJ (2013)

- *E. coli* $\Delta degP$ strain- Misfolded proteins are not degraded because it lacks the chaperone-protease DegP- can be lethal
- *E. coli* $\Delta degP$ strain produced higher levels of OMVs compared to wild type
- Lumen of OMVs produced by the $\Delta degP$ strain contained misfolded outer-membrane proteins, which are DegP substrates

OMVs in nutrient acquisition

Berleman JE, et al. (2014)

- *M. xanthus* OMVs contain hydrolytic and proteolytic enzymes
- Secondary metabolites with antibiotic activities (cittilin A, myxovirescin A, myxochelins and myxalamids)
- Killing of microbial prey within a community

Biller SJ, et al. (2014)

- OMVs from the marine cyanobacterium *Prochlorococcus*
- Support growth of heterotrophs *Alteromonas* and *Halomonas* sole carbon source

OMVs in Iron/Zinc acquisition

- Lappann M, et al. (2013): OMVs from *N. meningitidis* enriched in iron acquisition proteins, such as the iron-transporter components FetA and FetB
- OMVs from *N. meningitidis* are also enriched in the zinc acquisition proteins ZnuA and ZnuD
- Findings imply OMVs capture iron/zinc and transport it back to the cells (not yet shown in Gram negative bacteria)

Applications of OMVs

OMVs as vaccines

- OMVs make ideal vaccine candidates
 - Stable
 - Non-replicative, safe
 - Contain many of the immunogenic surface-associated and membraneassociated components of their parent bacterium
 - Ability to activate the innate immune system
 - Provide their own adjuvant activity- able to enhance T cell and antibody response
 - Versatility- bioengineered to carry any chosen antigen
 - Manipulated to reduce endotoxicity (associated with LPS)

M.Kaparakis-Liaskos and RL Ferrero (2015)

OMVs as vaccines

Meningococcal OMV vaccine

- *N. meningitidis* Meningococcal disease (meningitis/sepsis)- groups A,B,C,W-135 and Y
- Conjugate vaccines (capsular polysaccharide) available for groups A, C, W-135, and Y
- Group B- safety concerns about cross-reactivities of anticapsular antibodies with glycoproteins in human tissues
- Early MenB OMV vaccines- elicit immune response against PorA
 - Highly variable- used to control epidemic by clonal populations of isolates (New Zealand, Oster, P. et al. (2005))

OMVs as vaccines

- Breakthrough- OMV-based 4CMenB vaccine (Vesikari, T. et al. (2013))
 - Contains three highly immunogenic proteins incorporated into MenB OMV
 - Induces protective antibody responses against *N. meningitidis* including group B isolates
 - Approved by the European Commission for use (2 months of age and above)
- OMV vaccines against other Gram negatives in development
- Challenges: ability to elicit broad protection, inclusion of more antigens in OMVs and reducing LPS-mediated toxicity

OMVs as specialised drug delivery vehicles

- OMV with low immunogenicity-generated from mutant *E. coli*
- E. coli K12 strain W3110-msbB mutation
 - Produces under-acetylated LPS, \downarrow toxicity to human cells
- Carry a human epidermal growth factor receptor 2 (HER-2) specific affibody- targeting cancer cells
 - HER-2 overexpressed in 18-25% of breast cancers, ovarian cancers, gastric carcinoma and salivary gland tumors
- OMVs also loaded with small interfering RNAs-causes gene silencing
 - Targeting Kinesin spindle protein (critical role in mitosis)
- Lead to tumour regression in a mouse model
- Potential to be developed in human therapeutics

Summary

- OMVs- Spherical portions of outer membrane of Gram negative bacteria (50-250nm)
 - OMVs host a large repertoire of cargoes- proteins, nucleic acids and periplasmic fluid
- Mechanisms of OMV formation
 - Alterations in PG-OM crosslinks
 - Enrichment of envelop with special lipid microdomains
 - OMV promoting molecules- PQS
- Role in bacterial pathogenesis
 - Antimicrobial/phage resistance
 - Delivery of virulence factors
- Role in bacterial physiology
 - Disposal of undesired components
 - Nutrient acquisition
 - Iron/Zinc acquisition
- OMVs as tools
 - Vaccines 4CMenB
 - Specialised drug delivery vehicles- anti-cancer drugs

Thank you!